Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Eur J Clin Invest ; 53(6): e13963, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2271911

ABSTRACT

BACKGROUND: In severe acute respiratory distress syndrome (ARDS), venovenous extracorporeal membrane oxygenation (vvECMO) can be a lifesaver. However, anticoagulation therapy is mandatory because the nonendothelial extracorporeal surface increases the risk of thromboembolic problems. Heparin is still the most common anticoagulant, but argatroban could be an alternative. This work investigates whether argatroban offers a therapeutic advantage over heparin during vvECMO. METHODS: We performed a retrospective cohort study of patients who underwent vvECMO for severe ARDS and received heparin or argatroban as anticoagulation therapy. Demographic variables, intensive care unit (ICU) treatment and outcome parameters were evaluated. The primary outcome parameter was the operating time of the membrane oxygenator normalized to the duration of vvECMO treatment. Secondary outcome parameters were transfusion requirements normalized to the duration of vvECMO therapy. RESULTS: Fifty seven patients from January 2019 to February 2021 underwent vvECMO and were included in this study. Thirty three patients received heparin and 24 patients argatroban as anticoagulatory therapy. The groups did not differ in demographics, ICU scoring systems, or comorbidities. Platelet counts and partial prothrombin time did not differ between the two groups during the first 6 days of vvECMO. The argatroban group had lower requirements for red blood cells, platelets and fresh frozen plasma. The mean runtime of the individual membrane oxygenator increased from 12.3 days (heparin group) to 16.6 days in the argatroban group. CONCLUSIONS: Our findings suggest that argatroban can be considered as anticoagulant during vvECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , Oxygenators, Membrane , Retrospective Studies , Heparin/therapeutic use , Anticoagulants , Respiratory Distress Syndrome/drug therapy
2.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750532

ABSTRACT

BACKGROUND: The current coronavirus (COVID-19) pandemic is associated with severe pulmonary and cardiovascular complications. CASE PRESENTATION: This report describes a young patient with COVID-19 without any comorbidity presenting with severe cardiovascular complications, manifesting with pulmonary embolism, embolic stroke, and right heart failure. CONCLUSION: Management with short-term mechanical circulatory support, including different cannulation strategies, resulted in a successful outcome despite his critical cardiovascular status.

3.
Adv Drug Deliv Rev ; 179: 114007, 2021 12.
Article in English | MEDLINE | ID: covidwho-1482395

ABSTRACT

In recent years, nucleic acid-based therapeutics have gained increasing importance as novel treatment options for disease prevention and treatment. Synthetic messenger RNAs (mRNAs) are promising nucleic acid-based drugs to transiently express desired proteins that are missing or defective. Recently, synthetic mRNA-based vaccines encoding viral proteins have been approved for emergency use against COVID-19. Various types of vehicles, such as lipid nanoparticles (LNPs) and liposomes, are being investigated to enable the efficient uptake of mRNA molecules into desired cells. In addition, the introduction of novel chemical modifications into mRNAs increased the stability, enabled the modulation of nucleic acid-based drugs, and increased the efficiency of mRNA-based therapeutic approaches. In this review, novel and innovative strategies for the delivery of synthetic mRNA-based therapeutics for tissue regeneration are discussed. Moreover, with this review, we aim to highlight the versatility of synthetic mRNA molecules for various applications in the field of regenerative medicine and also discuss translational challenges and required improvements for mRNA-based drugs.


Subject(s)
Drug Delivery Systems , RNA, Messenger/administration & dosage , Regeneration , Regenerative Medicine/trends , Animals , COVID-19 Vaccines/administration & dosage , Gene Transfer Techniques , Genetic Therapy , Humans , RNA, Messenger/immunology
4.
Perfusion ; 36(8): 798-802, 2021 11.
Article in English | MEDLINE | ID: covidwho-1455838

ABSTRACT

AIM: Patients with cardiogenic shock or ARDS, for example, in COVID-19/SARS-CoV-2, may require extracorporeal membrane oxygenation (ECMO). An ECLS/ECMO model simulating challenging vascular anatomy is desirable for cannula insertion training purposes. We assessed the ability of various 3D-printable materials to mimic the penetration properties of human tissue by using porcine aortae. METHODS: A test bench for needle penetration and piercing in sampled porcine aorta and preselected 3D-printable polymers was assembled. The 3D-printable materials had Shore A hardness of 10, 20, and 50. 17G Vygon 1.0 × 1.4 mm × 70 mm needles were used for penetration tests. RESULTS: For the porcine tissue and Shore A 10, Shore A 20, and Shore A 50 polymers, penetration forces of 0.9036 N, 0.9725 N, 1.0386 N, and 1.254 N were needed, respectively. For piercing through the porcine tissue and Shore A 10, Shore A 20, and Shore A 50 polymers, forces of 0.8399 N, 1.244 N, 1.475 N, and 1.482 N were needed, respectively. ANOVA showed different variances among the groups, and pairwise two-tailed t-tests showed significantly different needle penetration and piercing forces, except for penetration of Shore A 10 and 20 polymers (p = 0.234 and p = 0.0857). Significantly higher forces were required for all other materials. CONCLUSION: Shore A 10 and 20 polymers have similar needle penetration properties compared to the porcine tissue. Significantly more force is needed to pierce through the material fully. The most similar tested material to porcine aorta for needle penetration and piercing in ECMO-implantation is the silicon Shore A 10 polymer. This silicon could be a 3D-printable material in surgical training for ECMO-implantation.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Animals , Aorta , Humans , Needles , SARS-CoV-2 , Shock, Cardiogenic , Swine
5.
Thromb Haemost ; 121(11): 1417-1426, 2021 11.
Article in English | MEDLINE | ID: covidwho-1104586

ABSTRACT

BACKGROUND: Accumulating evidence indicates toward an association between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and procoagulatory state in blood. Thromboelastographic investigations are useful point-of-care devices to assess coagulation and fibrinolysis. OBJECTIVES: We investigated the hypothesis that the procoagulatory state in COVID-19 patients is associated with impaired fibrinolysis system. METHODS: Altogether, 29 COVID-19 patients admitted to normal wards or to the intensive care unit (ICU) were included in this descriptive study. Whole blood samples were investigated by thromboelastography to assess coagulation and fibrinolysis. Additionally, standard routine coagulation testing and immunoassays for factors of fibrinolysis as plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), plasminogen activity and α2-antiplasmin (A2AP) were performed. RESULTS: A significantly increased lysis resistance and a significantly longer time of lysis after adding tissue plasminogen activator were observed in blood samples from ICU COVID-19 patients compared with healthy controls (maximal lysis: 3.25 ± 0.56 vs. 6.20 ± 0.89%, p = 0.0127; lysis time: 365.7 ± 44.6 vs. 193.2 ± 16.3 seconds, p = 0.0014). PAI-1 activity was significantly higher in plasma samples of ICU COVID-19 patients (PAI-1: 4.92 ± 0.91 vs. 1.28 ± 0.33 U/mL, p = 0.001). A positive correlation between the activity of PAI-1 and lysis time of the formed clot (r = 0.70, p = 0.0006) was observed. CONCLUSION: Our data suggest that severe SARS-CoV-2 infection is associated with impaired fibrinolytic activity in blood, where fibrinolytic inhibitors are elevated leading to an increased resistance to clot lysis. Thromboelastography could offer a tool to investigate the contribution of the fibrinolytic status to the procoagulatory condition in COVID-19.


Subject(s)
COVID-19/complications , Fibrinolysis , Thrombelastography , Thrombosis/etiology , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Child , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Risk Factors , Severity of Illness Index , Thrombosis/blood , Thrombosis/diagnosis , Time Factors , Young Adult
6.
J Card Surg ; 35(11): 3173-3175, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-692492

ABSTRACT

BACKGROUND: The current coronavirus (COVID-19) pandemic is associated with severe pulmonary and cardiovascular complications. CASE PRESENTATION: This report describes a young patient with COVID-19 without any comorbidity presenting with severe cardiovascular complications, manifesting with pulmonary embolism, embolic stroke, and right heart failure. CONCLUSION: Management with short-term mechanical circulatory support, including different cannulation strategies, resulted in a successful outcome despite his critical cardiovascular status.


Subject(s)
COVID-19/complications , Extracorporeal Membrane Oxygenation , Heart Failure/therapy , Ventricular Dysfunction, Right/therapy , Adult , Embolectomy , Embolic Stroke/therapy , Embolic Stroke/virology , Heart Failure/virology , Humans , Male , Pulmonary Embolism/surgery , Pulmonary Embolism/virology , Thrombosis/therapy , Thrombosis/virology , Ventricular Dysfunction, Right/virology
SELECTION OF CITATIONS
SEARCH DETAIL